
 

   PHYS 102 – General Physics II Final Exam Solution 

Duration: 150 minutes Monday, 5 June 2023; 09:30 
 

1. An infinite plane of non-conducting material is charged with uniform surface charge density +𝜎. Take the plane to 

be the 𝑥𝑦-plane (i.e., 𝑧 = 0). If it is moving with constant velocity 𝐯⃗ 0 = 𝑣0𝐢̂ in the 𝑥 direction: 

(a) (6 Pts.) find the electric field vector at the point (𝑥 = 0, 𝑦 = 0, 𝑧 = ℎ); 

(b) (7 Pts.) find the magnetic field vector at the same point; 

(c) (7 Pts.) find the Poynting vector 𝐒  at the same point. 

Solution: 

(a) Applying Gaus’s law to the closed surface shown, we get 

 

∯𝐄⃗ ∙ 𝑑𝐀⃗⃗ =
𝑄enc

𝜖0
  →     2𝐸𝐴 =

𝜎𝐴

𝜖0
  →     𝐄⃗ =

𝜎

2𝜖0
𝐤̂ . 

 

(b) Solution can be obtained using either Ampère’s law or Biot-Savart law. 

(b1) Applying Ampère’s law to the rectangular closed loop shown in the figure, we have 

𝑑𝑞 = 𝜎 𝑑𝑥 𝑑𝑦 ,
𝑑𝑞

𝑑𝑡
= 𝜎

𝑑𝑥

𝑑𝑡
 𝑑𝑦  →    𝑑𝐼 = 𝜎𝑣0 𝑑𝑦 

∮ 𝐁⃗⃗ ∙ 𝑑𝓵⃗ = 𝜇0𝐼enc   →     2𝐵𝑦𝐿 = −𝜇0𝜎𝑣0𝐿  →     𝐵𝑦 = −
1

2
𝜇0𝜎𝑣0 . 

 

(b2) Dividing the sheet into infinitesimal lines of current, we can use Biot-Savart 

law. From translational symmetry of the current in the 𝑦 direction, we know that the 

magnetic field is only in the ±𝑦 direction. 

 

𝑑𝐵 =
𝜇0𝑑𝐼

2𝜋 √𝑦2 + ℎ2
 , 𝑑𝐵𝑦 = −𝑑𝐵 sin𝜃  

sin𝜃 =
ℎ

√𝑦2 + ℎ2
  →     𝑑𝐵𝑦 = −

𝜇0𝜎𝑣0ℎ

2𝜋

𝑑𝑦

𝑦2 + ℎ2
  

 

𝐵𝑦 = −
𝜇0𝜎𝑣0ℎ

2𝜋
∫

𝑑𝑦

𝑦2 + ℎ2

∞

−∞

= −
𝜇0𝜎𝑣0ℎ

2𝜋
(
𝜋

ℎ
)    →     𝐁⃗⃗ = −

1

2
𝜇0𝜎𝑣0 𝐣̂ . 

 

 

(c) 

𝐒 =
1

𝜇0
𝐄⃗ × 𝐁⃗⃗   →    𝐒 = (

𝜎2𝑣0

4𝜖0
) 𝐢̂ .  

 

𝑥 

𝑦 

𝑧 

𝐿 
𝐁⃗⃗  

𝑩⃗⃗  

𝑦 

𝑑𝑦 𝑦 

ℎ 
√𝑦2 + ℎ2 

𝑑𝐁⃗⃗  

𝜃 

𝜃 

𝑧 



2. In a certain region of space near Earth’s surface, a uniform horizontal 

magnetic field of magnitude B exists above a level defined to be 𝑦 = 0.  Below 

𝑦 = 0, the field abruptly becomes zero. A vertical square wire loop has mass 

𝑚, resistivity 𝜌, diameter d, and side length ℓ. It is initially at rest with its 

lower horizontal side at 𝑦 = 0 and is then allowed to fall under gravity, with its 

plane perpendicular to the direction of the magnetic field, which is into the 

plane of the figure. Assume that 𝑑 ≪ ℓ, so ℓ ± 𝑑 ≈ ℓ.  

(a) (4 Pts.) What is the direction (clockwise or counter clockwise) of the 

current induced in the loop? Why? 

(b) (8 Pts.) While the loop is still partially immersed in the magnetic field (as it 

falls into the zero-field region), determine the magnetic “drag” force that acts on it at the moment when its speed is 𝑣. 

What is the direction of the force?  

(c) (8 Pts.) Assume that the loop achieves a terminal velocity 𝑣𝑇 before its upper horizontal side exits the field. 

Determine a formula for 𝑣𝑇. 

Solution: (a) As the loop falls out of the magnetic field, the flux through the loop decreases with time creating an 

induced emf in the loop. By Lenz’s law, the induced current should be clockwise so that its magnetic field should 

oppose the decrease of the flux. 

(b) Assume that at time 𝑡 when the speed of the loop is 𝑣(𝑡), the upper horizontal side is at 𝑦. Flux of the magnetic 

field through the loop is  

 

Φ𝐵 = 𝐵ℓ𝑦  →   
𝑑Φ𝐵

𝑑𝑡
= 𝐵ℓ

𝑑𝑦

𝑑𝑡
= 𝐵ℓ𝑣(𝑡)  →     |ℰ| =

𝑑Φ𝐵

𝑑𝑡
= 𝐵ℓ𝑣(𝑡) . 

 

The current in the loop is equal to the induced emf divided by the resistance, which can be written in terms of the 

resistivity as  

 

𝑅 =
𝜌(4ℓ)

(
𝜋𝑑
2 )

2 =
16𝜌ℓ

𝜋𝑑2
  →     𝐼 =

|ℰ|

𝑅
=

𝜋𝑑2𝐵

16𝜌
𝑣(𝑡) . 

 

This current induces a force on the three sides of the loop in the magnetic field.  The forces on the two vertical sides 

are equal and opposite and therefore cancel. The force on the horizontal side is 

 

𝐹𝐵 = 𝐼ℓ𝐵   →      𝐹𝐵 =
𝜋𝑑2𝐵2ℓ

16𝜌
𝑣(𝑡) . 

 

By Lenz’s law this force is upward to slow the decrease in flux. 

 

(c) Terminal speed 𝑣𝑇 will occur when the gravitational force is equal to the magnetic force. 

 

𝐹𝐵 = 𝑚g  →     
𝜋𝑑2𝐵2ℓ

16𝜌
𝑣𝑇 = 𝑚g  → 𝑣𝑇 =

16𝜌𝑚g

𝜋𝑑2𝐵2ℓ
 .  



3. Consider a coaxial cable made from two thin hollow coaxial tubes. The inner conductor has 

radius 𝑅1 and the outer conductor has radius 𝑅2.  

(a) (10 Pts.) Find the capacitance per unit length. 

(b) (10 Pts.) Find the inductance per unit length. 

 

Solution:  

(a) To find the capacitance per unit length, we first use Gauss’s law to find the electric field 

between the two conductors using a concentric cylindrical Gaussian surface of radius 𝑟 situated 

between the two conductors, i.e., 𝑅1 < 𝑟 < 𝑅2. 

 

∯𝐄⃗ ∙ 𝑑𝐀⃗⃗ =
𝑄enc

𝜖0
   →    𝐸(𝑟) =

𝑄

2𝜋𝜖0ℓ𝑟
 

 

|Δ𝑉| = ∫ 𝐸(𝑟)𝑑𝑟
𝑅2

𝑅1

=
𝑄

2𝜋𝜖0ℓ
∫

𝑑𝑟

𝑟

𝑅2

𝑅1

  →     Δ𝑉 =
𝑄

2𝜋𝜖0ℓ
ln (

𝑅2

𝑅1
) 

 

𝑄 = 𝐶 Δ𝑉 →    𝐶 =
𝑄

Δ𝑉
  →    𝐶 =

2𝜋𝜖0ℓ

ln(𝑅2 𝑅1⁄ )
  →    

𝐶

ℓ
=

2𝜋𝜖0

ln(𝑅2 𝑅1⁄ )
 . 

 

(b) To find inductance per unit length, we first use Ampère’s law to find the magnetic field between the two 

conductors where the path is circle of radius 𝑟, (𝑅1 < 𝑟 < 𝑅2). 

 

∮ 𝐁⃗⃗ ∙ 𝑑𝓵⃗ = 𝐵(𝑟)(2𝜋𝑟) = 𝜇0𝐼  →     𝐵(𝑟) =
𝜇0𝐼

2𝜋𝑟
 , 𝑅1 < 𝑟 < 𝑅2 . 

 

The magnetic flux through a rectangle of width 𝑑𝑟 and length ℓ along the cable, a distance 𝑟 from the center is 

 

𝑑Φ𝐵 = 𝐵(𝑟) (ℓ𝑑𝑟) =
𝜇0𝐼ℓ𝑑𝑟

2𝜋𝑟
  →     Φ𝐵 = ∫𝑑Φ𝐵 =

𝜇0𝐼ℓ

2𝜋
∫

𝑑𝑟

𝑟

𝑅2

𝑅1

   →     Φ𝐵 =
𝜇0𝐼ℓ

2𝜋
ln (

𝑅2

𝑅1
) . 

 

Therefore, 

 

𝐿 =
Φ𝐵

𝐼
=

𝜇0ℓ

2𝜋
ln (

𝑅2

𝑅1
)   →      

𝐿

ℓ
=

𝜇0

2𝜋
ln (

𝑅2

𝑅1
) . 

 

 

 

  

𝑅1 
𝑅2 



4. Consider the circuit shown where the voltage of the AC source is given as 𝑉 = 𝑉0 cos(𝜔𝑡). 

(a) (6 Pts.) Find the rms voltage 𝑉ac across the resistance 𝑅1. 

(b) (6 Pts.) Find the rms voltage 𝑉bc across the inductor 𝐿. 

(c) (8 Pts.) Find 𝑅1 in terms of 𝑅2, 𝐿, and 𝐶 so that the potential 

difference 𝑉ac − 𝑉bc is zero for all frequencies. 

Solution: 

 

With the given applied voltage, the rms currents through the capacior and the inductor branches are 

𝐼𝐶 𝑟𝑚𝑠 =
𝑉𝑟𝑚𝑠

√𝑅1
2 + 𝑋𝐶

2

 , 𝐼𝐿 𝑟𝑚𝑠 =
𝑉𝑟𝑚𝑠

√𝑅2
2 + 𝑋𝐿

2
 . 

 

(a) Therefore, the rms voltage across the resistor 𝑅1 is  

𝑉ac = 𝐼𝐶 𝑟𝑚𝑠𝑅1 =
𝑉0𝑅1

√2√𝑅1
2 + 𝑋𝐶

2

. 

 

(b) Similarly, the rms voltage across the inductor is 

𝑉bc = 𝐼𝐿 𝑟𝑚𝑠𝑋𝐿 =
𝑉0𝑋𝐿

√2√𝑅2
2 + 𝑋𝐿

2
 . 

 

(c)  

𝑉ac − 𝑉bc = 0  →     
𝑉0𝑅1

√2√𝑅1
2 + 𝑋𝐶

2

=
𝑉0𝑋𝐿

√2√𝑅2
2 + 𝑋𝐿

2
  →     

𝑅1

√𝑅1
2 + 𝑋𝐶

2

=
𝑋𝐿

√𝑅2
2 + 𝑋𝐿

2
 . 

Squaring both sides, we get 

𝑅1
2

𝑅1
2 + 𝑋𝐶

2 =
𝑋𝐿

2

𝑅2
2 + 𝑋𝐿

2   →    𝑅1
2𝑅2

2 + 𝑅1
2𝑋𝐿

2 = 𝑅1
2𝑋𝐿

2 + 𝑋𝐿
2𝑋𝐶

2   →    𝑅1
2𝑅2

2 = 𝑋𝐿
2𝑋𝐶

2    →      𝑅1𝑅2 = 𝑋𝐿𝑋𝐶  . 

 

Finally, using 𝑋𝐿 = 𝜔𝐿 and 𝑋𝐶 = 1/𝜔𝐶, we find 

𝑅1𝑅2 =
𝐿

𝐶
  →     𝑅1 =

𝐿

𝑅2𝐶
 , 

which is independent of the frequency 𝜔. 

 

 

 

  



5. In a circular region of space on the 𝑥𝑦-plane there exists a uniform magnetic field which changes in time according 

to the expression 𝐁⃗⃗ = 𝐵0(1 − 𝑒−𝑡 𝜏⁄  ) 𝐤̂ , where 𝐵0 and 𝜏 are positive constants.  

(a) (10 Pts.) Find the expression for the magnitude of the electric field at point A of 

the figure. Draw the direction of the electric field vector at point A on the figure. 

(b) (10 Pts.) Draw the direction of the Poynting vector at point B of the figure. What 

is its magnitude? 

 

Solution: 

(a) Magnetic flux through the circular region enclosed by the circle C of radius r is 

 

Φ𝐵 = 𝐵(𝜋𝑟2)  →     Φ𝐵 = 𝜋𝑟2𝐵0(1 − 𝑒−𝑡 𝜏⁄  ) . 

 

The electromotive force induced arount the circle is 

 

|ℰ| =
𝑑Φ𝐵

𝑑𝑡
  →   

1

𝜏
𝜋𝑟2𝐵0𝑒

−𝑡 𝜏⁄  . 

 

Since  

 

|ℰ| = ∮ 𝐄⃗ ∙ 𝑑𝓵⃗ = |𝐸|(2𝜋𝑟)   →     |𝐸|(2𝜋𝑟) =
1

𝜏
𝜋𝑟2𝐵0𝑒

−𝑡 𝜏⁄    →     |𝐸| =
𝐵0

2𝜏
𝑟𝑒−𝑡 𝜏⁄  . 

 

Magnetic flux is increasing, therefore, according to Lenz’s law, the electric field 

induced on the circle C is in clockwise direction.  

 

(b)  

𝐒 =
1

𝜇0
𝐄⃗ × 𝐁⃗⃗  

 

The electric and magnetic fields are perpendicular to each other. Therefore, 

 

𝑆 =
𝐵0

2𝑟

2𝜇0𝜏
𝑒−𝑡 𝜏⁄ (1 − 𝑒−𝑡 𝜏⁄  ) , 

 

its direction being −𝐣̂ × 𝐤̂ = −𝐢̂, i.e., inward at the point B.      

 

 

𝑥 

𝑦 

A 

B 

r 

𝑥 

𝑦 

A 

B 

r 

𝑬⃗⃗  

𝑺⃗⃗  


