PHYS 102 - General Physics II Final Exam Solution

1. An infinite plane of non-conducting material is charged with uniform surface charge density $+\sigma$. Take the plane to be the $x y$-plane (i.e., $z=0$). If it is moving with constant velocity $\overrightarrow{\mathbf{v}}_{0}=v_{0} \hat{\mathbf{1}}$ in the x direction:
(a) (6 Pts.) find the electric field vector at the point $(x=0, y=0, z=h)$;
(b) (7 Pts.) find the magnetic field vector at the same point;
(c) (7 Pts.) find the Poynting vector $\overrightarrow{\boldsymbol{S}}$ at the same point.

Solution:

(a) Applying Gaus's law to the closed surface shown, we get
$\oiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{\mathrm{enc}}}{\epsilon_{0}} \rightarrow \quad 2 E A=\frac{\sigma A}{\epsilon_{0}} \rightarrow \overrightarrow{\mathbf{E}}=\frac{\sigma}{2 \epsilon_{0}} \hat{\mathbf{k}}$.
(b) Solution can be obtained using either Ampère's law or Biot-Savart law.

(b1) Applying Ampère's law to the rectangular closed loop shown in the figure, we have
$d q=\sigma d x d y, \quad \frac{d q}{d t}=\sigma \frac{d x}{d t} d y \rightarrow d I=\sigma v_{0} d y$
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\mu_{0} I_{\mathrm{enc}} \rightarrow 2 B_{y} L=-\mu_{0} \sigma v_{0} L \rightarrow \quad B_{y}=-\frac{1}{2} \mu_{0} \sigma v_{0}$.
(b2) Dividing the sheet into infinitesimal lines of current, we can use Biot-Savart law. From translational symmetry of the current in the y direction, we know that the
 magnetic field is only in the $\pm y$ direction.
$d B=\frac{\mu_{0} d I}{2 \pi \sqrt{y^{2}+h^{2}}}, \quad d B_{y}=-d B \sin \theta$
$\sin \theta=\frac{h}{\sqrt{y^{2}+h^{2}}} \rightarrow d B_{y}=-\frac{\mu_{0} \sigma v_{0} h}{2 \pi} \frac{d y}{y^{2}+h^{2}}$

$B_{y}=-\frac{\mu_{0} \sigma v_{0} h}{2 \pi} \int_{-\infty}^{\infty} \frac{d y}{y^{2}+h^{2}}=-\frac{\mu_{0} \sigma v_{0} h}{2 \pi}\left(\frac{\pi}{h}\right) \rightarrow \overrightarrow{\mathbf{B}}=-\frac{1}{2} \mu_{0} \sigma v_{0} \hat{\mathbf{j}}$.
(c)
$\overrightarrow{\mathbf{S}}=\frac{1}{\mu_{0}} \overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}} \rightarrow \overrightarrow{\mathbf{S}}=\left(\frac{\sigma^{2} v_{0}}{4 \epsilon_{0}}\right) \hat{\mathbf{1}}$.
2. In a certain region of space near Earth's surface, a uniform horizontal magnetic field of magnitude B exists above a level defined to be $y=0$. Below $y=0$, the field abruptly becomes zero. A vertical square wire loop has mass m, resistivity ρ, diameter d, and side length ℓ. It is initially at rest with its lower horizontal side at $y=0$ and is then allowed to fall under gravity, with its plane perpendicular to the direction of the magnetic field, which is into the plane of the figure. Assume that $d \ll \ell$, so $\ell \pm d \approx \ell$.
(a) (4 Pts.) What is the direction (clockwise or counter clockwise) of the current induced in the loop? Why?
(b) (8 Pts.) While the loop is still partially immersed in the magnetic field (as it

falls into the zero-field region), determine the magnetic "drag" force that acts on it at the moment when its speed is v. What is the direction of the force?
(c) (8 Pts.) Assume that the loop achieves a terminal velocity v_{T} before its upper horizontal side exits the field. Determine a formula for v_{T}.

Solution: (a) As the loop falls out of the magnetic field, the flux through the loop decreases with time creating an induced emf in the loop. By Lenz's law, the induced current should be clockwise so that its magnetic field should oppose the decrease of the flux.
(b) Assume that at time t when the speed of the loop is $v(t)$, the upper horizontal side is at y. Flux of the magnetic field through the loop is
$\Phi_{B}=B \ell y \rightarrow \frac{d \Phi_{B}}{d t}=B \ell \frac{d y}{d t}=B \ell v(t) \rightarrow \quad|\mathcal{E}|=\frac{d \Phi_{B}}{d t}=B \ell v(t)$.

The current in the loop is equal to the induced emf divided by the resistance, which can be written in terms of the resistivity as
$R=\frac{\rho(4 \ell)}{\left(\frac{\pi d}{2}\right)^{2}}=\frac{16 \rho \ell}{\pi d^{2}} \rightarrow I=\frac{|\varepsilon|}{R}=\frac{\pi d^{2} B}{16 \rho} v(t)$.

This current induces a force on the three sides of the loop in the magnetic field. The forces on the two vertical sides are equal and opposite and therefore cancel. The force on the horizontal side is
$F_{B}=I \ell B \quad \rightarrow \quad F_{B}=\frac{\pi d^{2} B^{2} \ell}{16 \rho} v(t)$.

By Lenz's law this force is upward to slow the decrease in flux.
(c) Terminal speed v_{T} will occur when the gravitational force is equal to the magnetic force.
$F_{B}=m g \rightarrow \frac{\pi d^{2} B^{2} \ell}{16 \rho} v_{T}=m g \rightarrow v_{T}=\frac{16 \rho m g}{\pi d^{2} B^{2} \ell}$.
3. Consider a coaxial cable made from two thin hollow coaxial tubes. The inner conductor has radius R_{1} and the outer conductor has radius R_{2}.
(a) (10 Pts.) Find the capacitance per unit length.
(b) (10 Pts.) Find the inductance per unit length.

Solution:

(a) To find the capacitance per unit length, we first use Gauss's law to find the electric field between the two conductors using a concentric cylindrical Gaussian surface of radius r situated between the two conductors, i.e., $R_{1}<r<R_{2}$.

$\oiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q_{\text {enc }}}{\epsilon_{0}} \rightarrow E(r)=\frac{Q}{2 \pi \epsilon_{0} \ell r}$
$|\Delta V|=\int_{R_{1}}^{R_{2}} E(r) d r=\frac{Q}{2 \pi \epsilon_{0} \ell} \int_{R_{1}}^{R_{2}} \frac{d r}{r} \rightarrow \Delta V=\frac{Q}{2 \pi \epsilon_{0} \ell} \ln \left(\frac{R_{2}}{R_{1}}\right)$
$Q=C \Delta V \rightarrow C=\frac{Q}{\Delta V} \rightarrow C=\frac{2 \pi \epsilon_{0} \ell}{\ln \left(R_{2} / R_{1}\right)} \rightarrow \frac{C}{\ell}=\frac{2 \pi \epsilon_{0}}{\ln \left(R_{2} / R_{1}\right)}$.
(b) To find inductance per unit length, we first use Ampère's law to find the magnetic field between the two conductors where the path is circle of radius $r,\left(R_{1}<r<R_{2}\right)$.
$\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}=B(r)(2 \pi r)=\mu_{0} I \rightarrow B(r)=\frac{\mu_{0} I}{2 \pi r}, \quad R_{1}<r<R_{2}$.

The magnetic flux through a rectangle of width $d r$ and length ℓ along the cable, a distance r from the center is
$d \Phi_{B}=B(r)(\ell d r)=\frac{\mu_{0} I \ell d r}{2 \pi r} \rightarrow \Phi_{B}=\int d \Phi_{B}=\frac{\mu_{0} I \ell}{2 \pi} \int_{R_{1}}^{R_{2}} \frac{d r}{r} \rightarrow \quad \Phi_{B}=\frac{\mu_{0} I \ell}{2 \pi} \ln \left(\frac{R_{2}}{R_{1}}\right)$.

Therefore,
$L=\frac{\Phi_{B}}{I}=\frac{\mu_{0} \ell}{2 \pi} \ln \left(\frac{R_{2}}{R_{1}}\right) \rightarrow \frac{L}{\ell}=\frac{\mu_{0}}{2 \pi} \ln \left(\frac{R_{2}}{R_{1}}\right)$.
4. Consider the circuit shown where the voltage of the AC source is given as $V=V_{0} \cos (\omega t)$.
(a) (6 Pts.) Find the rms voltage $V_{\text {ac }}$ across the resistance R_{1}.
(b) (6 Pts.) Find the rms voltage V_{bc} across the inductor L.
(c) (8 Pts.) Find R_{1} in terms of R_{2}, L, and C so that the potential difference $V_{\mathrm{ac}}-V_{\mathrm{bc}}$ is zero for all frequencies.

Solution:

With the given applied voltage, the rms currents through the capacior and the inductor branches are $I_{C r m s}=\frac{V_{r m s}}{\sqrt{R_{1}^{2}+X_{C}^{2}}}, \quad I_{L r m s}=\frac{V_{r m s}}{\sqrt{R_{2}^{2}+X_{L}^{2}}}$.
(a) Therefore, the rms voltage across the resistor R_{1} is
$V_{\mathrm{ac}}=I_{C r m s} R_{1}=\frac{V_{0} R_{1}}{\sqrt{2} \sqrt{R_{1}^{2}+X_{C}^{2}}}$.
(b) Similarly, the rms voltage across the inductor is
$V_{\mathrm{bc}}=I_{L r m s} X_{L}=\frac{V_{0} X_{L}}{\sqrt{2} \sqrt{R_{2}^{2}+X_{L}^{2}}}$.
(c)
$V_{\mathrm{ac}}-V_{\mathrm{bc}}=0 \rightarrow \frac{V_{0} R_{1}}{\sqrt{2} \sqrt{R_{1}^{2}+X_{C}^{2}}}=\frac{V_{0} X_{L}}{\sqrt{2} \sqrt{R_{2}^{2}+X_{L}^{2}}} \rightarrow \frac{R_{1}}{\sqrt{R_{1}^{2}+X_{C}^{2}}}=\frac{X_{L}}{\sqrt{R_{2}^{2}+X_{L}^{2}}}$.
Squaring both sides, we get
$\frac{R_{1}^{2}}{R_{1}^{2}+X_{C}^{2}}=\frac{X_{L}^{2}}{R_{2}^{2}+X_{L}^{2}} \rightarrow R_{1}^{2} R_{2}^{2}+R_{1}^{2} X_{L}^{2}=R_{1}^{2} X_{L}^{2}+X_{L}^{2} X_{C}^{2} \rightarrow R_{1}^{2} R_{2}^{2}=X_{L}^{2} X_{C}^{2} \rightarrow R_{1} R_{2}=X_{L} X_{C}$.

Finally, using $X_{L}=\omega L$ and $X_{C}=1 / \omega C$, we find
$R_{1} R_{2}=\frac{L}{C} \rightarrow R_{1}=\frac{L}{R_{2} C}$,
which is independent of the frequency ω.
5. In a circular region of space on the $x y$-plane there exists a uniform magnetic field which changes in time according to the expression $\overrightarrow{\mathbf{B}}=B_{0}\left(1-e^{-t / \tau}\right) \hat{\mathbf{k}}$, where B_{0} and τ are positive constants.
(a) (10 Pts.) Find the expression for the magnitude of the electric field at point A of the figure. Draw the direction of the electric field vector at point A on the figure.
(b) (10 Pts.) Draw the direction of the Poynting vector at point B of the figure. What is its magnitude?

Solution:

(a) Magnetic flux through the circular region enclosed by the circle C of radius r is

$\Phi_{B}=B\left(\pi r^{2}\right) \rightarrow \Phi_{B}=\pi r^{2} B_{0}\left(1-e^{-t / \tau}\right)$.

The electromotive force induced arount the circle is
$|\mathcal{E}|=\frac{d \Phi_{B}}{d t} \rightarrow \frac{1}{\tau} \pi r^{2} B_{0} e^{-t / \tau}$.

Since
$|\mathcal{E}|=\oint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\boldsymbol{\ell}}=|E|(2 \pi r) \rightarrow|E|(2 \pi r)=\frac{1}{\tau} \pi r^{2} B_{0} e^{-t / \tau} \rightarrow|E|=\frac{B_{0}}{2 \tau} r e^{-t / \tau}$.

Magnetic flux is increasing, therefore, according to Lenz's law, the electric field induced on the circle C is in clockwise direction.
(b)
$\overrightarrow{\mathbf{S}}=\frac{1}{\mu_{0}} \overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}$

The electric and magnetic fields are perpendicular to each other. Therefore,
$S=\frac{B_{0}^{2} r}{2 \mu_{0} \tau} e^{-t / \tau}\left(1-e^{-t / \tau}\right)$,
its direction being $-\hat{\mathbf{\jmath}} \times \hat{\mathbf{k}}=-\hat{\mathbf{1}}$, i.e., inward at the point B .

